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Abstract-The unsteady spherically symmetrical evaporation of a cold single-component droplet in atmo- 
spheres at pressures above the critical pressure of the liquid and at temperatures above the critical 
temperature of the liquid is modelled. High pressure phase equilibrium is assumed at the droplet surface, 
and solubility of the ambient gas in the droplet, temperature and composition inhomogeneities within the 
droplet, real gas effects and variable property effects are considered. Depending on the ambient conditions, 
the droplet surface reaches the critical state and vanishes. Thereafter, a pure diffusion problem is treated. 

INTRODUCTION 

IN MANY combustion systems, cold fuel droplets are 
introduced into surroundings at temperatures and 
pressures exceeding the critical values of the fuel. 
Droplet evaporation under these conditions has been 
modelled in several theoretical studies. SBnchez- 
Tarifa et al. [l] assumed that there is no discontinuity 
at the droplet surface, so that subcritical evaporation 
cannot be represented. Matlosz et al. [2] performed a 
spherically symmetrical boundary layer analysis for a 
single-component liquid supposing uniform droplet 
properties and taking into account real gas effects and 
high pressure phase equilibrium. However, dis- 
solution of ambient gas in the droplet is not 
considered, which means that for prescribed pressure 
and droplet temperature, the equilibrium condition 
for the gaseous component cannot be satisfied. Thus, 
a droplet’s transition to the supercritical state cannot 
be modelled. In the experimental part of the work, 
Matlosz et al. consider n-hexane droplets evaporating 
in nitrogen atmospheres under high pressures. As in 
these experiments natural convection has a large 
influence, unfortunately the results of the present cal- 
culations cannot be compared with these experimental 
results. In a theoretical study, Rosner and Chang [3] 
investigated spherically symmetrical evaporation in 
dense atmospheres emphasizing systematical errors 
associated with the quasi-steady approximation. Tem- 
perature and mole fractions within the droplet are 
assumed to be uniform and time-independent, thus 
droplet heat-up is not taken into account. However, 
from the heat balance, Rosner and Chang derived the 

t Present address : BASF Aktiengesellschaft, ZET/EA, 
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ambient temperature and pressure conditions under 
which a droplet can exist at a constant wet bulb tem- 
perature and the conditions under which it may attain 
the critical state. Jin and Borman [4] theoretically 
investigated quasi-steady high pressure vaporization 
of multicomponent drops accounting for forced con- 
vection and liquid circulation by using empirical cor- 
relations for the transport coefficients. Dissolved gas 
in the liquid is considered in the computation of phase 
equilibrium, but the computation ignores its diffusion 
within the droplet. The saturation pressure profile 
within the droplet is determined, and the results at the 
droplet surface (p,,, - 0.3~) seem to be inconsistent 
with the assumption of chemical equilibrium : in this 
case one expects psat = p. Kadota and Hiroyasu [5] 
developed a quasi-steady model for high pressure 
droplet vaporization taking into account natural con- 
vection by using empirical correlations. Real gas 
effects and high pressure phase equilibrium are con- 
sidered ; however, the equilibrium condition for the 
gaseous component is not satisfied. Kadota and 
Hiroyasu’s theoretical results compare favourably to 
experiments they had conducted in a previous study. 
In an asymptotic study, Umemura [6] considers that 
phase change at supercritical pressures occurs spa- 
tially continuously disregarding the fact that at tem- 
peratures below the critical temperature, equilibrium 
between a liquid and a gas phase may well exist even 
at supercritical pressures. Furthermore, his similarity 
analysis depends on the assumption that the partial 
enthalpies per unit mass of all species are the same. 
Delplanque and Sirignano [7] theoretically investigate 
evaporation of oxygen droplets in hydrogen atmo- 
spheres under high pressures taking into account the 
most important high-pressure effects. After the drop- 
let surface has reached the critical state, a critical 
interface with fixed temperature and composition is 
tracked. It does not seem clear, however, how the 
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NOMENCLATURE 

A, u, a, parameters for equation of state 

B, h, b, parameters for equation of state 
2/, driving force for mass diffusion 

n,, diffusion coefficient 
H enthalpy 
h molar cnthalpy 

11, partial molar cnthalpy 

I length of element 

IV, molar mass 
N, N, amount of substance 

n, 17, amount of substance per volume 
?i normal vector 

P pressure 

4, q heat flux 
R universal gas constant 

4, droplet radius 

RO initial droplet radius 
T tcmpcraturc 
I time 

Li, 11 velocity 
IJ molar volume 

V, partial molar volume 
?,. V, diffusion velocity 
.u, mole fraction 

% compressibility factor. p l4 R T. 

Greek symbols 
I, thermal conductivity 

P, chemical potential 
density 

: dissipation function 

0, fugacity coefficient 
(i) acentric factor. 

Subscripts 
C critical value 
D droplet 
W evaporation 
i,.j, k referring to species i,,j, k 

sal saturation 
0 at I = 0 
% at infinity. 

Superscripts 
L liquid 
V vapor 
;I: droplet surface. 

conditions at this critical interface could be deter- 
mined in a general multi-component system. 

In the present work, an approach to model the 
transition from subcritical evaporation to super- 
critical diffusion is presented. Temperature and mole 
fraction profiles within the droplet and in the atmo- 
sphere are calculated as a function of time, and the 
influence of pressure and ambient temperature is 
shown. While the droplet heats up, the concentration 
jump at the phase interface decreases. For sufficiently 
high pressures and ambient temperatures, this dis- 
continuity eventually completely vanishes. Then, the 
droplet surface reaches the critical state, and the sub- 
critical droplet evaporation becomes supercritical 
diffusion. The quality of the results in this study essen- 
tially depends on the quality of the equation of state, 
which plays a central role in the proposed model. 

FORMULATION OF THE PROBLEM AND 
ASSUMPTIONS 

At t = 0, a droplet with uniform temperature 
T = T,,, and uniform composition x, = x,,, is intro- 
duced into a quiescent gaseous environment with uni- 
form temperature T= T,,,. The ambient pressure. 

which may be time-dependent, is prescribed. 
A spherically symmetrical problem is considered, 

natural or forced convection is not modelled. As 
the velocities induced by the evaporation process are 
small compared to the velocity of sound, the pressure 

is considered uniform in the whole domain [8]. The 
influence of surface tension on vapor pressure, which 
is small for pressures above 1 bar and droplet diam- 
eters above 1 pm [8], is neglected. The contribution 
of viscous dissipation in the energy balance is not 
considered. Soret and Dufour effects are not taken 
into account. Mass forces are not involved, and at the 
phase interface chemical equilibrium is assumed. For 
both phases as well as for the supercritical state, the 
Redlich-Kwong equation of state modified by Soavc 
(SRK equation) is used. Using the same equation 01 
state in all three cases, no discontinuity occurs in the 
model when the droplet surface reaches the critical 

state. 

BASIC EQUATIONS 

The basic equations are taken from Hirschfelder (11 
trl. [9]. The equations of species conservation for a 
mixture are 

Dn, 
Dt- 

= -n,V*3-V*(n,P,). 

where li is the mass average velocity, 6’, is the diffusion 
velocity of the ith species, and D/Dt denotes the 
material time derivative. n, 6’, is calculated with 

(2) 
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where si is the driving force for mass diffusion. It EQUATION OF STATE 

involves- the derivatives of the chemical potential ,ui 
when a non-ideal substance is considered : 

The SRK equation of state for a pure substance is 
written [lo, 3.61 ff] 

VA-,. (3) 
RT a -_ _____.. 

p = V-b V(V+b)’ (10) 

The chemical potential nLi is calculated from the equa- where 
tion of state. 

In the equation of conservation of energy b = 0.08664~. 

n~=~-V.l+~+hV.(T”i~i), (4) 

the heat flux is expressed as 

G = -IVT+Ch,n,?i. (5) 

As the pressure has been assumed uniform, the 
equation of momentum conservation need not be 
considered. 

At infinity, the boundary conditions T = Y’,@(i)) 
and .x, = x,, are imposed. 

Pc R~‘(1+j+ [;T’)J a = a( Z-) = 0.42748 2 

and 

jii = 0.48+1.574~0--0.176~~ 

The critical values T, and pC and the acentric factor o 
are found in literature, e.g. in ref. [ 101. 

For mixtures, a and b in (10) are calculated as a 
function of the pure component values ai and bi and 
of x,: 

INTERFACE CONDITIONS AT THE DROPLET b = Cxibi 
SURFACE 

During the subcritical part of the evaporation pro- 
cess, local chemical equilib~um is assumed at the a = 2ZCZxixj(aja,)‘12(1 -k,). 

phase interface. The temperature profile over the 
interface is continuous, whereas the mole fractions xi 

The interaction coefficients k, are supposed to be 

are different on both sides of the droplet surface. At 
constant. For many mixtures, they can be found in 

the droplet surface, the following quantities have to 
ref. [ll]. 

With the abbreviations 
be determined : 

the mole fractions xf- and X: on the liquid and on _7=!?! /f_?.!? and &bp 
RT’ R2TZ RT’ 

the vapor side of the interface, 
the interface temperature T’, (10) is written 

and the velocity differences uL-u’ and u” -u’, 
where z? is the speed of the droplet surface and u’- and 

z3-P+(,4--B--B2)Z-AB = 0. (11) 

U” are the mass average velocities on both sides of the The fugacity coefficient Qp, used in the computation of 
interface. chemical equilib~um is calculated 

In a mixture consisting of n species, there are 2n + 3 
unknowns which verify the 2n + 3 conditions R*ln@i=~(P’i-~)d~, (12) 

of phase equilibrium where the partial molar volume is 

x,L@~(.x;, T=,p) -.x;@&‘, TX, p) = 0, (6) 

of compatibility 
v.= ?!!!Y 

;( > alvi p,T,N,(j+i)' 

l-XX~=l-~xy=o, (7) With the SRK equation, one obtains 

of continuity of mass flux 

n;(z&-u”f y;)-.y(,v-uZ:+ vy) = 0, (8) 

InOi = :(Z-1)-In(Z-B) 

and of continuity of heat flux + 

hLnL(uL -u”) +q’-- (hvn”(uV-u=)+q”) = 0. 

(9) 
where 

In the heat flux condition the enthalpy of vaporization Si = Z!$Tx,a:“(l -k,). (14) 
does not appear explicitly. It is contained in the 
differences of partial enthalpies in both phases. The derivatives of the chemical potential, which are 
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needed for the diffusion calculation. arc written: 

(i f i) 

(15) 

The molar enthalpy II = h( T, p, _x,) and the partial 

molar enthalpies /I, are derived from ideal gas state 
values by using departure functions [lo, 5.31. These 

only depend on the equation of state. This way, spec- 
ific heat capacities of liquids and vaporization 
enthalpies need not be determined using separate 
formulae, 

CALCULATION OF MASS DIFFUSION 

COEFFICIENTS AND THERMAL CONDUCTIVITY 

In the case of a binary mixture, the diffusion 

coefficients D , z and D?, take the same value equal to 
the binary diffusion coefficient, and n, , = Dz2 = 0. 

In the present calculations, D, z for ideal gases is deter- 
mined using the method of Wilke and Lee for binary 
gas systems [IO. 11.4.1]. As to diffusion of dissolved 
gas molecules in the liquid and diffusion in the super- 

critical state, there is considerable uncertainty. For 
the present calculations. D, 2 for all states is taken to 
be the ideal gas value multiplied by the compressibility 
factor Z. This way, a smooth transition between the 
models for diffusion in the gas, liquid and supercritical 
state is obtained and the fact that diffusion coefficients 
in liquids are much lower than in gases is at lcast 
qualitatively taken into account. 

The thermal conductivity i. for the gaseous, liquid 
and supercritical states is calculated as proposed by 

Reid [lo]. 
For reduced densities p/p, lower than 2.8, it is evalu- 

ated as follows : 

1. determination of the dynamic viscosity ,I( of each 
pure component using the Chung correlation [ 10. 
9.4.31, 

2. calculation of the thermal conductivity E.F at low 
pressures for each pure component using the modified 
Eucken correlation [lo. 10.3.51, 

3. finding the low pressure mixture conductivity i,” 

by applying the Wassiljewa mixing law [ 10, 10.6.1], 
4. accounting for high pressure using the method 

of Sticl and Thodos [IO, 10.5.2 ff]. 

For reduced densities p/p< exceeding 2.8. the ther- 
mal conductivity of each pure component is deter- 
mined by the method of Latini et ul. [IO, 10.9.1]. and 
then Li’s mixing law [IO, 10.12.17 ff] is applied. The 
influence of pressure is neglected. 

Owing to the lack of experimental data, there is 
considerable doubt in the determination of the trans- 
port coefficients at high pressures and high tem- 
peratures. 

NUMERICAL METHOD 

An explicit first order finite volume method is used. 
As the properties in each element are supposed to bc 
approximately uniform, the droplet surface. which IS‘ 
a surface of discontinuity, must bc situated on the 

boundary between two elements. 
For the numerical procedure, the integral form of 

the conservation equations 

is applied to each computational clement. The gradi- 

ents needed to calculate n,?, and q over the element 
boundaries are assumed to be constant between two 
neighbor cell centers which are not separated by the 
surface of discontinuity, or between the cell center and 
the surface of discontinuity. 

The diffusion calculation is Lagrangian. Except for- 
the droplet surface. the calculation of the mass flux 
and the heat flux across the cell boundaries is straight- 
forward. The determination of the fluxes across the 
phase interface requires the solution of the system of 
equations (6))(9). For the computation of the 
unknown interface conditions .v,’ 1 .I-:. TX, u’ -u’ and 
11” -I.?, the quantities in the centers of the two 
elements adjacent to the interface arc considered to 
be given. Then. with a first order approximation of the 
gradients between the cell centers and the interface, 
$, q”. V). Vy = fct(.$ , s:. TX) are injected into (8) and 
(9). The non-linear system can then be solved using a 
NewtonRaphson procedure. Once .Y/ . x:‘. TX, u’ -u’ 
and u” -u’ are found, the mass fluxes rz,’ (or -u”+ VT ) 
and the heat flux hLnL(u’ -u”) + y’ across the interface 
can directly be calculated. After new N, and H have 
been computed in all cells, the new temperatures 
T= 7(/r. s,, p) can be found. Now. the volume of 
each element (and thus the radial positions of all 
clcments) can bc determined from the equation of 
state. Finally, a rezoning procedure assures that the 
mesh is maintained geometrically similar to the initial 

one. 
In order to avoid a time step restriction due to the 

explicit treatment of diffusion, a subcycling procedure 

is used. 

COMPUTATIONAL RESULTS 

Evaporation of a droplet (T,), = 300 K) consisting 
of n-hexanc (p, = 30.1 bar, T, = 507.5 K) in a nitro- 
gen atmosphere is considered. First. time-dependent 
temperature and mole fraction fields are shown fot 
p = 100 bar and T, = 800 K. Then, parametrical 

studies are carried out to show the influence of the 
ambient conditions on the evaporation process. 
Finally, evaporation under time-dependent pressure is 
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studied under thermodynamical conditions typically mth gaseous element is 1: = 1.2 * IL_, . To test the 
found in diesel engines. influence of numerical discretization, the time a drop- 

Under the assumptions made in the present cal- let gets supercritical is calculated for different meshes 
culations, the evaporation processes of droplets of and time steps. The original discretization yields 
different initial sizes are all similar. The presentation t,,/4Rt = 2.134 s mm-*, whereas a mesh only half as 
of the data in Figs. l-3 is valid for arbitrary values of fine gives t,,/4Rf, = 2.174 s mm-* (difference 2%). 
the initial droplet radius RO. Calculations of sub- Using the original mesh with a doubled time step, one 
critical evaporation are stopped when the droplet finds t,J4Rf, = 2.137 s mm-*, thus the influence of the 
radius reaches 5% of its initial value. time step is negligible. 

EVAPORATION AT p = 100 bar AND 

T,=8ooK 

INFLUENCE OF AMBIENT TEMPERATURE 

Figure l(a) shows the time evolution of the fuel 
mole fraction profile. As the droplet heats up, the 
jump at the interface decreases and finally vanishes at 
t/4R: = 2.13 s mm-*. The same applies to the jump 
in dT/ar at the droplet boundary (Fig. l(b)). However, 
zones of high gradients persist after the droplet has 
got supercritical. Figure l(c) shows the differences 
between the mass average velocities ~8 and u” and the 
velocity u’ of the interface. When the droplet surface 
gets supercritical and the composition on both sides 
becomes the same, uL = u” holds for continuity 
reasons. 

The calculation has been performed with a mesh 
containing 20 elements of equal length within the 
droplet. The gaseous element adjacent to the droplet 
has the length 17 = 0.05 *R,, and the length of the 

In Figure 2 the influence of T, on vaporization 
under p = 100 bar is shown. For ambient tem- 
peratures exceeding 600 K, the droplets get super- 
critical before their radius reaches 5% of its initial 
value. The drop radius at the time the surface reaches 
the critical state increases with ambient temperature. 
The initial swelling of the drops is due to heat-up. 
Figure 2(b) shows faster droplet heat-up for higher 
ambient temperatures. However, the mean droplet 
temperature does not attain its highest final values for 
the highest ambient temperatures because in these 
cases less time is available to heat the drop’s center 
before its surface reaches the critical state. In Fig. 
2(c), the nitrogen mole fractions on both sides of the 
interface are shown. The upper branch refers to the 
gas phase and the lower branch to the liquid phase. 
When both branches meet, the droplet gets super- 

(a) MOLE FRACTION PROFILES 

1 

(b) TEMPERATURE PROFILES 

(cl VELOCITY DISCONTINUITIES AT INTERFACE 

b 1 i 
t/4lg lslmm2) 

FIG. 1. Calculated fuel mole fraction and temperature profiles and time evolution of the velocity differences 
at the droplet surface for an n-hexane droplet evaporating in a nitrogen atmosphere at T, = 800 K and 

p= lOObar. 
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(a) DROPLET RADIUS. p=lOO bar (b) MEAN DROPLET TEMPERATURE, p=lOO bar 

MOLE FRACTION AT INTERFACE. ~‘100 bat 

FIG. 2. Calculated radius, average temperature and nitrogen molt fraction histories of n-hexane droplets 
evaporating at p = 100 bar in nitrogen atmospheres at different temperatures. 

critical. Clearly, under p = 100 bar the gas dissolved 
in the liquid phase should not be neglected. 

INFLUENCE OF PRESSURE 

In Fig. 3 evaporation in an atmosphere with 

r,z = 1400 K is considered under pressures between 
40 and 120 bar. Only at p = 40 bar, the droplet does 

not get supercritical before its radius reaches 5% of 
its starting value ; nevertheless, it is far from reaching 
any constant wet bulb temperature. Increasing pres- 
sure causes the droplets to heat up and become super- 
critical faster. The mean droplet temperature does not 
reach its maximum values at the highest pressures 
because, again, the surface reaches the critical state 
before the interior can be heated. Figure 3(c) shows 
that the quantity of dissolved gas in the liquid phase 
grows with increasing pressure. 

EVAPORATION UNDER TIME-DEPENDENT 

PRESSURES 

The ambient conditions are chosen to be rcp- 
resentative of the thermodynamical conditions found 
in a diesel engine during the period of fuel injection, 
if no combustion is supposed to take place. At t = 0, 

the ambient temperature is T,x,o = 600 K, and the 
pressure is p = 20 bar. The pressure changes at a con- 

stant rate, until at t = 1 ms, p = 100 bar is reached. 
At infinity, an adiabatic compression is supposed to 
calculate T, (p(t)). Initial droplet radii between 6 and 
10 pm are considered. Figure 4 shows time evolutions 
of droplet radius, mean temperature and mole frac- 
tions at the surface. The smallest droplet does not 
get supercritical because it vanishes before the ambient 
temperature and pressure reach sufficiently high 
values. The strongly increasing surface regression vel- 
ocity dR/dt reflects the influence of growing ambient 
temperature due to compression. 

CONCLUSION 

A model to simulate spherically symmetrical 
unsteady droplet evaporation at high pressures con- 
sidering real gas effects, phase equilibrium and inhom- 
ogeneities of temperature and composition in the 
droplet has been presented. Temperature and con- 
centration profiles show the transition from sub- 
critical evaporation to supercritical diffusion. The 
influence of ambient temperature and pressure has 
been shown, and simulations of droplet evaporation 
at time-dependent pressures typically found in diesel 
engines have been carried out. Experimental vah- 
dation is desirable. However, for typical experimental 
conditions, natural convection is not negligible, and 
a model taking it into account would be needed. 
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(a) DROPLET AADIUS, T-=1400 K (b) MEAN DROPLET TEMPERATURE, T.=1400 K 

0 
0 04 0.8 1.2 
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(4 DROPLET RADIUS /---E&q (bf MEAN DROPLET TEMPERATURE 

__. 
0 02 

t/4@ O;hm~f 
t.(L 

(c) MOLE FRACTION AT INTERFACE. T-=1400 K 

_ p-60 bar _ _ 
IE.E Jar _ 

Dn 
0.B 

5 
x 0.4 

0.2 

0 
” 0.8 

FIG. 3. Calculated radius, average temperature and nitrogen mole fraction histories of n-hexane droplets 
evaporating at different pressures in nitrogen atmospheres at T, = 1400 K. 

i 0:2 i 
t fms) t (m.4 

CC) MOLE FRACTION AT INTERFACE 

i 012 02 ok oh i 
t lmsf 

FIG. 4. Calculated radius, average temperature and nitrogen mole fraction histories of n-hexane droplets 
evaporating in a nitrogen atmosphere at p(t) = 20 bar+ 80 bar x (t/l ms) and T,(t = 0) = 600 K. 
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